Informatik, TU Wien

Image processing applications in small and big scales

Vortrag aus der PhD school Series "Current Trends in Computer Science"


The main task of digital image processing is to process and analyze image-like data. Data from any source can be understood as an image if it can be represented in a matrix form. Most often we deal with images of 2 or 3 spatial dimensions, but time (e.g. in video sequences) and spectral dimensions (e.g. in aerial remote sensing) can also be handled. Among others, image processing deals with image restoration (the compensation for degradation), image segmentation (the delineation of objects depicted in the image), image registration (determining the spatial correspondence between images acquired at different time and/or space), image fusion (forming a new image by combining the information from multiple images), calculating object properties and describing the objects and/or the scene depicted in the image. Image processing is applied in an increasing number of areas in life, such as in medical image diagnosis systems, industrial manufacturing and quality control, security systems, from autonomous robots to smartphones with cameras. In this lecture the audience shall get a taste of these topics and challenges through selected projects from the half century history of image processing at the University of Szeged.


László G. Nyúl has received his degrees in mathematics and computer science from the University of Szeged, Hungary. Currently he is the Head of the Department of Image Processing and Computer Graphics, Faculty of Science and Informatics, University of Szeged. Between 2011 and 2014 he has been deputy head of the Institute of Informatics at the University of Szeged. His research interest is digital image processing with a focus on medical applications and fuzzy approaches. Since 1991 he lectures at the University of Szeged in various subjects, including Computer graphics, Graphical systems, Advanced graphics algorithms, Multimedia, Image processing, Fuzzy techniques in image processing, Image databases, and Medical imaging.