Informatics, TU Vienna

Cyber-physical Systems: The World is Going Smart

From computer chips triggering an airbag to smart cities: “cyber-physical systems” are changing our world. During CPS-week (April 11 -14. 2016), the international scientific community comes together in Vienna.

TU Wien, Presseaussendung 17 / 2016, Florian Aigner

zum deutschen Text

English translation: R. Grosu

One inputs the data, leaves the computer do the calculations, and gets a result back at the end – this is how one used to work with computer programs for a long time. Today however, this is not enough anymore. Computer programs control the airbag in our cars, the temperature in our homes and the beat of our pacemakers. Software and physical components are growing together into integrated systems, and many such systems are getting interconnected, so that as a whole, they are able to solve a common problem. One talks in this case about “cyber-physical systems” (CPS).

Vienna is the Capital of CPS this April

Austria plays an internationally leading role in the CPS arena – both in academic research, and in industrial application. This year, Vienna’s Hofburg hosts the most important scientific event in CPS area worldwide. As many as four important conferences have been co-located within CPS-Week; from 11th to 14th of April one expects around thousand scientists from all over the world to come. The main organizers of CPS-Week are the Institute of Science and Technology Austria (IST Austria), the Technical University of Vienna (TU Wien), and the Austrian Institute of Technology (AIT).

“Cyber-physical systems are going to completely change our everyday life”, says Professor Radu Grosu (TU Wien). “One estimates that by 2020, there will be more than one thousand electrical systems for each human being.” Many small processors already control our cars. One day, most cars will drive on their own, and will negotiate with each other, which path each one is going to take. Cyber-physical systems in buildings will improve the quality of our life and make it safer. In factories, machines will coordinate with each other in an autonomous fashion – we are talking about an “internet of things” and “Industry 4.0”. Some of these ideas are already being put into practice.

Results in Real Time

These new developments face us with many scientific challenges: “The factor time plays a very different role in cyber-physical systems than it used to play in the computer programs of the past”, says Professor Thomas Henzinger (IST Austria). “Solutions must be found reliably, in real time. When a program on my desktop freezes for a few seconds, or it has to be restarted after an update, this is not a big problem. But if the same thing happens in the control system of an airplane, it can lead to a major catastrophe.” The physical properties of the system determine how much time the software has to find an answer. It does not necessarily have to be the optimal answer. A useful approximation at the right moment is better than the exact solution coming too late. TTTech, founded by Prof. Hermann Kopetz from TU Wien, is a world leading company in this field.

Another characteristic of CPS is their intrinsic uncertainty. “We have to free ourselves from the idea that a computer behaves always the same way, and that we can absolutely predict this behaviour in advance” says Radu Grosu. “We use models of physical processes which are never complete, we deal with sensor data which are always noisy, and we provide approximate solutions that are most often nondeterministic instead of being exact and deterministic.”

In order to deal with uncertainty, new programming techniques have to be developed. “The current state of the art in computer science is very similar to the state of the art of physics, a hundred years ago: Viennese researchers such as Ludwig Boltzmann or Erwin Schrödinger explained how physics can deal with chance and unpredictability. Today, computer scientists have to solve similar problems”, says Radu Grosu. Probabilities or deterministic laws, continuous variables or discrete quantities – when computer code and physical systems are put together, different mathematical approaches have to be reconciled. Scientists such as Thomas Henzinger have been pioneers in developing the model of “hybrid automata”, a model that is used today all over the world.

Useful, reliable, safe

Cyber-physical systems are not being developed in order to replace humans. They are developed in order to become reliable tools for our everyday life. Many of the future challenges that our society will face, will only be solvable if we are going to use digital communication systems. “Information and communication technologies have become the backbone of society. Smart production and the distribution of electricity, intelligent and autonomous traffic systems, modern health care such as telemedicine, support for the elderly, environmental management, public safety and disaster relief, competitive industrial production lines facing global competition, and much more – all these examples show that the ever closer connection between physical world and electronic controls opens up completely new possibilities for social as well as entrepreneurial developments”, says Helmut Leopold, head of the digital safety and security department at AIT.

Eventually, a technological ecosystem will develop, permeating various aspects of life. “We will deal with thousands of computer processors every day, but we will hardly notice them”, says Radu Grosu. Cyber-physical systems will be integrated seamlessly into our modern life, much like earthworms, which improve the quality of the soil in our garden or the trees in the park, filtering dust from the air.

Cyber-Physical Systems: Die ganze Welt wird smart

Vom Chip, der Airbags auslöst bis zur intelligenten Stadt: „Cyber-physical Systems“ bringen uns eine Welt, in der alles vernetzt und vieles einfacher ist. Bei der CPS Week vom 11. bis 14. April 2016 trifft sich die internationale Forschungscommunity in Wien.

Man tippt Daten ein, lässt den Computer rechnen, und am Ende bekommt man ein Ergebnis angezeigt – so sah lange Zeit die Arbeit mit Computerprogrammen aus, doch heute genügt das längst nicht mehr. Computerprogramme steuern den Airbag in unserem Auto, die Temperatur in unseren Häusern und den Takt von Herzschrittmachern. Software und physische Komponenten wachsen zu integrierten Systemen zusammen, und viele solche Systeme werden miteinander verbunden, um gemeinsam Probleme lösen zu können. Man spricht dann von „Cyber-Physical Systems“ (CPS).

Wien ist diesen April CPS-Welthauptstadt

Österreich spielt in diesem Bereich eine international führende Rolle – sowohl in der akademischen Forschung als auch in der industriellen Anwendung. Dieses Jahr findet in der Wiener Hofburg die wichtigste wissenschaftliche Veranstaltung in diesem Bereich statt: Gleich vier wichtige Konferenzen hat man zur CPS-Week kombiniert; vom 11. bis 14. April werden rund tausend Forscherinnen und Forscher aus der ganzen Welt in Wien erwartet. Organisiert wird die CPS-Week gemeinsam von IST Austria, der TU Wien und dem AIT Austrian Institute of Technology.

„Cyber-physische Systeme werden unseren Alltag völlig verändern“, glaubt Prof. Radu Grosu von der TU Wien. „Man schätzt, dass bis zum Jahr 2020 auf jeden Menschen ungefähr tausend elektronische Systeme kommen werden.“ In jedem Auto sind schon heute viele kleine miteinander vernetzte Prozessoren eingebaut. Eines Tages werden die meisten Autos überhaupt automatisch fahren und durch smarte Steuerung miteinander ausverhandeln, wer welchen Weg nehmen soll. Cyber-physische Systeme in Gebäuden werden das Wohnen angenehmer machen und für mehr Sicherheit sorgen. In den Fabriken werden sich Maschinen selbstständig aufeinander abstimmen – unter Schlagworten wie „Industrie 4.0“ oder „Internet of things“ werden diese Entwicklungen mittlerweile weltweit diskutiert und zum Teil auch bereits umgesetzt.

Resultate in Echtzeit

Wissenschaftlich betrachtet bringt das viele neue Herausforderungen mit sich: „Der Faktor Zeit muss in cyber-physischen Systemen ganz anders berücksichtigt werden als in früheren Computerprogrammen“, sagt Prof. Thomas Henzinger vom IST Austria. „Lösungen müssen zuverlässig in Echtzeit gefunden werden. Wenn ein Programm auf meinem Desktop für ein paar Sekunden einfriert oder nach einem Update neu gestartet werden muss, dann ist das kein großes Problem. Doch bei der Steuerung eines Flugzeugs könnte das zu einer Katastrophe führen.“ Die physischen Eigenschaften des Systems legen fest, wie lange die Software Zeit hat, um eine Antwort zu finden. Das muss nicht unbedingt die bestmögliche Antwort sein. Eine brauchbare Näherungslösung zur richtigen Zeit ist besser als die exakte Lösung, die zu spät kommt. Die Wiener Firma TTTech des TU-Professors Hermann Kopetz ist auf diesem Gebiet weltweit führend.

Ein weiteres Charakteristikum von cyber-physischen Systemen ist ihre intrinsische Unsicherheit. „Wir müssen uns von der Vorstellung lösen, dass sich Computer immer auf eine Weise verhalten, die für uns absolut vorhersehbar ist“, sagt Radu Grosu. „Wir verwenden Modelle physikalischer Abläufe, die niemals ganz vollständig sind, wir haben es mit Sensordaten zu tun, die immer mit Fehlern behaftet sind, wir können statt exakter Lösungen oft nur gewisse Wahrscheinlichkeiten angeben.“

Um mit solchen Unsicherheiten richtig umgehen zu können, muss man in der Programmierung grundlegend neue Herangehensweisen entwickeln. „Wir sind in der Informatik heute in einer ähnlichen Situation wie die Physik vor hundert Jahren: Wiener Forscher wie Ludwig Boltzmann oder Erwin Schrödinger zeigten, wie man in der Physik mit Zufall und Unvorhersagbarkeit umgehen kann. Heute haben wir in der Informatik eine ähnliche Aufgaben zu lösen.“ Wahrscheinlichkeiten oder deterministische Gesetze, kontinuierliche Größen oder diskrete Zustände – wenn man Programmcodes und physische Systeme kombiniert, muss man auch unterschiedliche mathematische Zugänge sauber miteinander verbinden. Forscher wie Thomas Henzinger haben dazu das weltweit gängige mathematische Modell der „hybriden Automaten“ entwickelt.

Nützlich, sicher, zuverlässig

Cyber-physische Systeme sind nicht dazu da, den Menschen zu ersetzen, sie sollen nützliche und höchst zuverlässige Werkzeuge für unseren Alltag sein. Viele zukünftige Herausforderungen unserer Gesellschaft werden wir nur durch einen gezielten Einsatz von digitalen Kommunikationssystemen bewältigen können. „Informations- und Kommunikationstechnologien sind zur zentralen Lebensader unserer Gesellschaft geworden. Smarte Produktion und Verteilung von Elektrizität, intelligente und autonome Verkehrssysteme, moderne Gesundheitsdienste wie beispielsweise Telemedizin oder Unterstützung im Alter, Umweltmanagement, öffentliche Sicherheit und Bewältigung von Naturkatastrophen, wettbewerbsfähige industrielle Fertigungsanlagen im globalen Wettbewerb und vieles mehr – all diese Beispiele zeigen eindrucksvoll, dass die immer enger werdende Verbindung zwischen physischer Welt und elektronischen Steuermechanismen völlig neue Chancen für gesellschaftliche, als auch unternehmerische Entwicklungen bergen“, sagt Helmut Leopold, Head of Digital Safety & Security Department am AIT.

Am Ende soll ein computertechnologisches Ökosystem stehen, das verschiedenste Lebensbereiche durchdringt. „Wir werden täglich mit tausenden Computerprozessoren zu tun haben, sie aber kaum bemerken“, glaubt Radu Grosu. Cyber-physische Systeme werden sich genauso reibungslos in unseren modernen Alltag einfügen wie die Regenwürmer, die unser Gartenbeet fruchtbarer machen, oder die Bäume im Park, die Staub aus unserer Luft filtern.

Rückfragehinweis:
Prof. Radu Grosu
Institut für Technische Informatik
Technische Universität Wien
T: +43-1-58801-18210
radu.grosu@tuwien.ac.at

Prof. Thomas Henzinger
Institute of Science and Technology
IST Austria
T: +43-2243-9000-1033

Aussender:
Dr. Florian Aigner
Büro für Öffentlichkeitsarbeit
Technische Universität Wien
Operngasse 11, 1040 Wien
T: +43-1-58801-41027
florian.aigner@tuwien.ac.at