Context: Reasoning on Imperative Programs

Imperative programs
- Specify computational behavior
- Used in all fields of technology
- Often complex & constructed by hand

Automated analysis
- Semantic analysis (behavior of programs)
- Useful for many practical purposes

Previous approaches include:
- Hoare logic [1]; calculus for proving semantic properties of programs
- Relating semantic properties to valid FOL formulae [3]
- Denotational semantics, cf. [4]; interpreting programs as functions

Setting
- Simple imperative language (yet Turing-complete)
- Variable assignment, if-then statements, while statements
- Termination and equivalence of programs

Example: programs (1) and (2) are equivalent.

1. \[z := x; (\text{if } x < 5 \text{ then } (x := y; y := 8) \text{ else } \text{skip}) \]
2. \[z := x; x := y; y := 8; \text{if } (z \geq 5) \text{ then } y := x; x := z \text{ else } \text{skip} \]

Problem Statement
- How can we provide automated reasoning on programs, resulting in practical algorithms for decidable fragments?
- Can we identify additional decidable fragments?

Approach: Translation to Description Logic

Translation of programs
- Syntactic translation into description logic \(\mathcal{ALC}(D) \)
- Prototypical \(\mathcal{ALC} \) extended with concrete domains, cf. [2]

Simulating behavior
- Behavior of programs encoded into models of translation
- Reducing reasoning to general logic reasoning

Example program \(p \):

\[p = (x := 0; (\text{while } x < 2 \text{ do } x := x + 1); \text{skip}) \]

Its encoding \(T^p \) includes:

- \(\exists \text{value}_x, N \) \(\text{next}(\exists \text{value}_x) = 0 \cap C_p' \)
- \(\exists \text{value}_x, C_x < 2 \) \((\neg D_x < 2 \cup C_x := x + 1; p') \cap (D_x < 2 \cup C\text{skip}) \)
- \(C_x := x + 1; p' \)

Main Result 1: Semantic Correspondence

Correspondence
- Operational semantic of programs corresponds to model-theoretic semantics of translation

Reducing reasoning
- Termination and equivalence of programs reduced to \(\mathcal{ALC}(D) \) (un)satisfiability
- Use existing \(\mathcal{ALC}(D) \) (un)satisfiability algorithms for several fragments

Theorem (soundness). For every model \(I \) of the translation \(T^p \) of \(p \), if \(I \) contains an object \(a \) corresponding to a state \(s \) in the concept \(C_p' \) for program \(p \), then the model \(I \) contains the derivation of \(p \) on \(s \) starting at object \(a \).

Theorem (completeness). For every derivation \(d \) of \(p \), there is a model \(I \) of the translation \(T^p \) of \(p \) that contains the derivation \(d \).

Main Result 2: Decidable Fragments

Undecidability
- Reasoning on programs is undecidable in general e.g., via reduction from Hilbert’s Tenth Problem
- Decidable fragments: finite numerical domains, no while-loops

Additional decidable fragment
- Based on finite partition of state space into appropriate equivalence classes
- Algorithm for equivalence of programs in this fragment based on encoding into \(\mathcal{ALC}(D) \) and its model-theoretic semantics

Example program \(q \) in the decidable fragment, computing \[f(x) = \begin{cases} 0 & \text{if } x = 0 \\ 1 & \text{otherwise} \end{cases} \]

\[q = x_0 := 0; \text{while } (x < 5) \text{ do } (x_0 := x_0 + x_1; x_0 := x_0 + 1); \]

\[x_0 := 0; \text{while } (x < 4) \text{ do } (x_0 := x_0 + x_2; x := x + 1); \]

\[(x_1 \leq 0) \text{ then } x_0 := x_0 + 3 \text{ else skip} \]

Practical Application

Implementation of automated reasoning
- In cooperation with Siemens AG
- Industrial-sized imperative rule base
- Algorithms based on translation approach

References

[6] King’s College London. Computational Logic. Faculty of Informatics Supervision: Ao.Univ.-Prof. Dr. Bernhard Gramlich

Contact: dehaan.ronald@gmail.com