A Framework for Medical-Imaging-Fragment Based Whole Body Atlas (WBA) Construction

Matthias Dorfer
Vienna University of Technology
Institute of Computer Aided Automation
Computer Vision Lab

Introduction and Motivation

The thesis proposes a method for the construction of an atlas from multiple medical imaging fragments that show different parts of the body. The method first builds an initial atlas based on a small number of whole body CTs. Then the final atlas is constructed by registering a large number of fragments, and at the same time minimizing the bias.

To illustrate the information encoded in the atlas, population analysis in the atlas space is performed, and correctly identifies plausible sub-populations.

Atlas Point of View

Human anatomy exhibits variability:
- Sizes or shapes of organs
- Physiological state
- Disease characteristics

Anatomical atlas construction overcomes this variability.

Based on images containing identical anatomical structures!

Example: Brain NMI Atlas

Data Point of View

Hospitals produce hundreds of GBs of pathology driven medical imaging data every day.
- Distributed across the entire body
- Holds diagnostic information

→ Precondition for existing atlases is not fulfilled!

Medical Imaging Data

Methodology

Initial Least Biased Whole Body (WB) Reference Selection

Methods
- MDS Embedding Space Center
- Registration Cost Minimization
- Geodesic Center Estimation

Fragment Center Estimation

Input Fragment
Similarity with Annotated Miniature Set
Robust Center Estimation based on k Most Similar Miniatures

Fragment Region Estimation and Non-rigid Registration

Input Fragment
Registration of Corresponding Fragment Regions

Fragment Based WBA Construction

Average Fragment Registration

\[V = \frac{1}{N} \sum_{i=1}^{N} T_{F_i,R}(F_i) \]

Average Deformation

\[T = \frac{1}{N} \sum_{i=1}^{N} T_{F_i,R} \]

Draw Average Registration towards Population Center

\[R_F = T^{-1}(V) \]

Fragment Based Population Analysis

Features
- Overlap
- Deformation Similarity
- Registration Costs

Affinity Data

- Spectral Clustering
- Iso-Map Clustering

Results

Fragment Based WBA Construction

Initial WB Reference R
Fragment Based WBA R_F

Distance of Landmark Distributions to Centroids (Abdomen)

Exploratory Population Analysis

Detection of Biological Plausible Sub-Populations

(*female vs. *male)

Conclusion

We propose an anatomical atlas framework providing:

An iterative algorithm for fragment to WB reference space registration.

Methods for medical-imaging-fragment based computation of representative population atlases.

Methodology for fragment based sub-population analysis.

Contact: matthias.dorfer@gmx.at